Striped field mice (Apodemus agrarius) are the main host for the Hantaan virus (HTNV), the cause of hemorrhagic fever with renal syndrome (HFRS) in central China. It has been shown that host population density is associated with pathogen dynamics and disease risk. Thus, a higher population density of A. agrarius in an area might indicate a higher risk for an HFRS outbreak. Here, we surveyed the A. agrarius population density between 2005 and 2012 on the Weihe Plain, Shaanxi Province, China, and used this monitoring data to examine the relationships between the dynamics of A. agrarius populations and environmental conditions of crop-land, represented by remote sensing based indicators. These included the normalized difference vegetation index, leaf area index, fraction of photosynthetically active radiation absorbed by vegetation, net photosynthesis (PsnNet), gross primary productivity, and land surface temperature. Structural equation modeling (SEM) was applied to detect the possible causal relationship between PsnNet, A. agrarius population density and HFRS risk. The results showed that A. agrarius was the most frequently captured species with a capture rate of 0.9 individuals per hundred trap-nights, during 96 months of trapping in the study area. The risk of HFRS was highly associated with the abundance of A. agrarius, with a 1-5-month lag. The breeding season of A. agrarius was also found to coincide with agricultural activity and seasons with high PsnNet. The SEM indicated that PsnNet had an indirect positive effect Remote Sens. 2017, 9, 1076; doi:10.3390/rs9101076www.mdpi.com/journal/remotesensing Remote Sens. 2017, 9, 1076 2 of 13 on HFRS incidence via rodents. In conclusion, the remote sensing-based environmental indicator, PsnNet, was highly correlated with HTNV reservoir population dynamics with a 3-month lag (r = 0.46, p < 0.01), and may serve as a predictor of potential HFRS outbreaks.