Abstract. Satellite based earth observations offer great opportunities to improve spatial model predictions by means of spatial pattern oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilized for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible 15 spatial parameterisation scheme. The mesoscale Hydrologic Model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multiscale parameter regionalization. In addition two new domain specific spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parametrisations are utilized as they are most relevant for 20 simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric i.e. comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data.The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite based 25 estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimizer. The calibration results reveal a limited trade-offs between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved 30 when including an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow only calibration. Since the overall water balance is usually a crucial goal in the hydrologic modelling, spatial pattern oriented optimization should always be accompanied by traditional discharge measurements. In such a multiobjective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge 35 observations.Hydrol. Earth Syst. Sci. Discuss., https://doi