Anthropogenic carbon emissions lock in long-term sea-level rise that greatly exceeds projections for this century, posing profound challenges for coastal development and cultural legacies. Analysis based on previously published relationships linking emissions to warming and warming to rise indicates that unabated carbon emissions up to the year 2100 would commit an eventual global sea-level rise of 4.3-9.9 m. Based on detailed topographic and population data, local high tide lines, and regional long-term sea-level commitment for different carbon emissions and ice sheet stability scenarios, we compute the current population living on endangered land at municipal, state, and national levels within the United States. For unabated climate change, we find that land that is home to more than 20 million people is implicated and is widely distributed among different states and coasts. The total area includes 1,185-1,825 municipalities where land that is home to more than half of the current population would be affected, among them at least 21 cities exceeding 100,000 residents. Under aggressive carbon cuts, more than half of these municipalities would avoid this commitment if the West Antarctic Ice Sheet remains stable. Similarly, more than half of the US population-weighted area under threat could be spared. We provide lists of implicated cities and state populations for different emissions scenarios and with and without a certain collapse of the West Antarctic Ice Sheet. Although past anthropogenic emissions already have caused sea-level commitment that will force coastal cities to adapt, future emissions will determine which areas we can continue to occupy or may have to abandon.climate change | climate impacts | sea-level rise M ost studies on the projected impacts of anthropogenic climate change have focused on the 21st century (1). However, substantial research indicates that contemporary carbon emissions, even if stopped abruptly, will sustain or nearly sustain near-term temperature increases for millennia because of the long residence time of carbon dioxide in the atmosphere and inertia in the climate system, e.g., the slow exchange of heat between ocean and atmosphere (2-5). Earth system and carboncycle feedbacks such as the release of carbon from thawing permafrost or vegetation changes affecting terrestrial carbon storage or albedo may further extend and possibly amplify warming (6).Paleontological records indicate that global mean sea level is highly sensitive to temperature (7) and that ice sheets, the most important contributors to large-magnitude sea-level change, can respond to warming on century time scales (8), while models suggest ice sheets require millennia to approach equilibrium (9). Accordingly, sustained temperature increases from current emissions are expected to translate to long-term sea-level rise (SLR). Through modeling and with support from paleontological data, Levermann et al. (10) found a roughly linear global mean sealevel increase of 2.3 m per 1°C warming within a time-envelope of th...