Spatial-Temporal Graph Neural Networks for Groundwater Data
Maria Luisa Taccari,
He Wang,
Jonathan Nuttall
et al.
Abstract:This paper introduces a novel application of spatial-temporal graph neural networks (ST-GNNs) to predict groundwater levels. Groundwater level prediction is inherently complex, influenced by various hydrological, meteorological, and anthropogenic factors. Traditional prediction models often struggle with the nonlinearity and non-stationary characteristics of groundwater data. Our study leverages the capabilities of ST-GNNs to address these challenges in the Overbetuwe area, Netherlands.
We utilize a comprehens… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.