Abstract:The response of radial growth to climate and the climate sensitivity of tree growth at different ages in different drought conditions are essential for predicting forest dynamics and making correct forest management policies. In this study, we analyzed the growth responsiveness of Picea crassifolia Kom. to climate and explored the relationship between age and climate sensitivity of radial growth at the individual tree scale in the wetter eastern area and drier western area of the Qilian Mountains. Pearson correlation coefficients were calculated between the chronology of each tree and climatic factors to examine the climate-growth relationships. Linear fitting, quadratic polynomial fitting and exponential fitting were used to test the relationships between age and mean sensitivity, standard deviation and radial growth's response to climate. Trees in the wetter eastern area showed a weaker response to climate than those in the drier western area and were significantly correlated with precipitation and mean temperature in the previous and current mid-late summer. Trees in the drier western area were mainly limited by precipitation of the previous August, the current May and June, as well as limited by temperature in the previous and current early-middle summer. In the wetter area, the younger trees were more sensitive to both precipitation and temperature than the older trees. In the drier area, younger/older trees showed a stronger sensitivity to precipitation in the current August and September/May, whereas trees 120-140 years old showed a stronger correlation with temperature factors in the summer. It was determined that mature trees in the drier area were more strongly influenced by the climate, especially in the context of increasing temperature. These trees should be paid special attention in forest management.