Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Magnesium (Mg) is a vital nutrient for plants, and its role in photosynthesis, enzyme regulation and resistance to environmental stress is becoming increasingly evident. However, there is a paucity of knowledge regarding the characteristics of Mg (content, density and stock) on a large scale, particularly at the community level, which is essential for linking to ecosystem functions. A leaf‐branch‐trunk‐root‐matched database of the Mg content (mg g−1) and biomass density (g m−2) of plant organs across 1972 sampling sites in China was constructed based on field surveys and data compilation. Using machine learning algorithms, we comprehensively explored the spatial patterns and main influencing factors of plant Mg content and density (g m−2). Furthermore, a new index, leaf Mg productivity (LMP), was developed to determine the Mg use efficiency, defined as the ratio of gross primary productivity to leaf Mg density. The Mg contents in the leaves, branches, trunks and roots were 2.80, 0.87, 0.23 and 1.66 mg g−1, respectively. Deserts exhibited higher Mg content, with the primary influencing factors being high temperatures and soil Mg supply. Higher LMP values observed in grasslands and deserts indicate that Mg use is more efficient in these relatively stressful environments, whereas forests require more Mg for unit biomass productivity. This change was driven by the minimum temperature, aridity and soil Mg content. Synthesis. We systematically explored spatial variation in plant community Mg and its correlation with the photosynthetic capacity of plant communities. The aridity and soil Mg content have negative effects on LMP. This suggests that Mg is used more efficiently in photosynthesis under conditions of resource scarcity, indicating that resources become more valuable when they are limited. Photosynthesis in forests is more sensitive to Mg and more Mg is required for biomass production; therefore, Mg is not just a nutrient but a potential bottleneck in optimizing photosynthetic efficiency. Our findings highlight the pivotal role of Mg in photosynthesis and offer a foundation for optimizing ecosystem management through Mg regulation.
Magnesium (Mg) is a vital nutrient for plants, and its role in photosynthesis, enzyme regulation and resistance to environmental stress is becoming increasingly evident. However, there is a paucity of knowledge regarding the characteristics of Mg (content, density and stock) on a large scale, particularly at the community level, which is essential for linking to ecosystem functions. A leaf‐branch‐trunk‐root‐matched database of the Mg content (mg g−1) and biomass density (g m−2) of plant organs across 1972 sampling sites in China was constructed based on field surveys and data compilation. Using machine learning algorithms, we comprehensively explored the spatial patterns and main influencing factors of plant Mg content and density (g m−2). Furthermore, a new index, leaf Mg productivity (LMP), was developed to determine the Mg use efficiency, defined as the ratio of gross primary productivity to leaf Mg density. The Mg contents in the leaves, branches, trunks and roots were 2.80, 0.87, 0.23 and 1.66 mg g−1, respectively. Deserts exhibited higher Mg content, with the primary influencing factors being high temperatures and soil Mg supply. Higher LMP values observed in grasslands and deserts indicate that Mg use is more efficient in these relatively stressful environments, whereas forests require more Mg for unit biomass productivity. This change was driven by the minimum temperature, aridity and soil Mg content. Synthesis. We systematically explored spatial variation in plant community Mg and its correlation with the photosynthetic capacity of plant communities. The aridity and soil Mg content have negative effects on LMP. This suggests that Mg is used more efficiently in photosynthesis under conditions of resource scarcity, indicating that resources become more valuable when they are limited. Photosynthesis in forests is more sensitive to Mg and more Mg is required for biomass production; therefore, Mg is not just a nutrient but a potential bottleneck in optimizing photosynthetic efficiency. Our findings highlight the pivotal role of Mg in photosynthesis and offer a foundation for optimizing ecosystem management through Mg regulation.
Anthropogenic land use modifications are causing severe degradation of terrestrial ecosystems, and multiple revegetation strategies are emerging globally to counteract the loss of plant richness and productivity. While soil microorganisms are essential for plant community dynamics, the role of soil microbial biodiversity in regulating changes in plant richness and productivity under different revegetation strategies remains unknown. We used multitrophic co‐occurrence networks to identify soil network modules of strongly co‐occurring phylotypes along a 50‐year revegetation chronosequence of agricultural abandonment and afforestation. Soil biodiversity within these modules was related to soil nutrient cycling functions, plant richness and productivity (understorey layer in afforestation), elucidating how these network modules are associated with changes in plant richness and productivity. Plant richness and productivity increased simultaneously following both agricultural abandonment and afforestation. However, the biodiversity of key soil taxa within distinct network modules was associated with these coupled increases through the regulation of different nutrient cycling functions. Key soil phylotypes within the network modules involved in nitrogen (N) cycling correlated with the simultaneous increase in plant richness and productivity following agricultural abandonment. In contrast, those involved in phosphorus (P) and sulphur (S) cycling were linked to the coupled responses of both plant richness and productivity under afforestation. This reflects the divergent microbial mechanisms associated with the coupled increase in plant richness and productivity along the revegetation chronosequence for both agricultural abandonment and afforestation. Synthesis. Our findings provide correlative evidence that the biodiversity of key phylotypes within soil network modules is closely associated with the simultaneous increase in plant richness and productivity following the cessation of agricultural management. We identify key soil taxa, specific to each revegetation strategy, that could serve as potential targets for genomic and cultivation‐based approaches to counteract plant community degradation. Revegetation efforts to enhance plant richness and productivity should focus on soil phylotypes associated with N cycling after agricultural abandonment and those involved in P and S cycling during afforestation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.