Background The United Nations Environment Program, UNEP (2005) estimates that between 20 and 50 million tonnes of e-waste are generated annually worldwide, accounting for about 5% of all municipal solid waste. In a recent global waste stream analysis, the composition of global quantity of e-waste generated in 2014 comprised of 1.0 Mt of lamps, 3.0 Mt of Small IT, 6.3 Mt of screens and monitors, 7.0 Mt of temperature exchange equipment (cooling and freezing equipment), 11.8 Mt of large equipment, and 12.8 Mt of small equipment and the global is projected to grow to 49.8 Mt in 2018, with an annual growth rate of 4 to 5 per cent [1, 2]. Not only is this figure representing the fastest growing municipal waste stream, it also has the potential of increasing further. In spite of the unprecedented growth in the global quantities, there is only limited recycling technology for disposal and safe management especially in the developing countries where most of the wastes end up and are recycled by informal means using rudimentary methods [3, 4].