This paper deals with the leader-follower formation control of underactuated autonomous surface vehicles in the presence of model uncertainties and input constraints. In a leader-follower formation, an autonomous surface vehicle (ASV) called leader tracks a pre-described trajectory and other ASVs called followers that are controlled to follow the leader with a desired distance and desired relative bearing. To this end, some adaptive robust techniques are adopted to guarantee the robustness of the closed-loop system against model uncertainties, external disturbances, and input saturation constraints. Based on the Lyapunov synthesis, it is proven that with the developed formation controllers, the closed-loop system is stable and all the formation errors converge to a small neighborhood of zero. Simulation results demonstrate the effectiveness of the proposed method.