Spatially‐correlated time series clustering using location‐dependent Dirichlet process mixture model
Junsub Jung,
Sungil Kim,
Heeyoung Kim
Abstract:The Dirichlet process mixture (DPM) model has been widely used as a Bayesian nonparametric model for clustering. However, the exchangeability assumption of the Dirichlet process is not valid for clustering spatially correlated time series as these data are indexed spatially and temporally. While analyzing spatially correlated time series, correlations between observations at proximal times and locations must be appropriately considered. In this study, we propose a location‐dependent DPM model by extending the … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.