We describe here an example of applying particle swarm optimization (PSO) -a population-based heuristic technique -to maximize the net present value of a contemporary southern United States forest plan that includes spatial constraints (green-up and adjacency) and wood flow constraints. When initiated with randomly defined feasible initial conditions, and tuned with some appropriate modifications, the PSO algorithm gradually converged upon its final solution and provided reasonable objective function values. However, only 86% of the global optimal value could be achieved using the modified PSO heuristic. The results of this study suggest that under random-start initial population conditions the PSO heuristic may have rather limited application to forest planning problems with economic objectives, wood-flow constraints, and spatial considerations. Pitfalls include the need to modify the structure of PSO to both address spatial constraints and to repair particles, and the need to modify some of the basic assumptions of PSO to better address contemporary forest planning problems. Our results, and hence our contributions, are contrary to earlier work that illustrated the impressive potential of PSO when applied to stand-level forest planning problems or when applied to a high quality initial population.Key words: mathematical programming; heuristic; modeling technique; forest management.
ResumenDificultades y posibilidades del algoritmo de optimización de enjambre de partículas para la planificación contemporánea espacial del bosque Se describe aquí un ejemplo de la aplicación de la optimización de enjambre de partículas (PSO) -una técnica heurís-tica basada en la población -para maximizar el valor presente neto de un moderno plan de gestión del bosque del sur de los Estados Unidos, que incluye limitaciones espaciales y restricciones del flujo de madera. Cuando se inicia con condiciones iniciales factibles definidas aleatoriamente, y en sintonía con algunas modificaciones adecuadas, el algoritmo PSO converge gradualmente sobre su solución final y suministra los valores de la función objetivo. Sin embargo, sólo el 86% del valor global óptimo podría lograrse usando la heurística PSO modificada. Los resultados de este estudio sugieren que bajo condiciones de arranque aleatorio de la población inicial, la heurística PSO puede tener una aplicación más bien limitada a los problemas de planificación forestal con objetivos económicos, restricciones de flujo de madera y consideraciones espaciales. Las dificultadas incluyen la necesidad de modificar la estructura de PSO para abordar tanto las limitaciones espaciales como para reparar las partículas, y la necesidad de modificar algunos de los supuestos básicos de PSO para abordar mejor los problemas contemporáneos de la planificación forestal. Nuestros resultados, y por lo tanto nuestra aportación, son contrarios a trabajos anteriores que ilustran el impresionante potencial de PSO cuando se aplica a problemas de planificación forestal a nivel de rodal o cuando se aplic...