Microfluidic systems hold great potential
for the study of live
microscopic cultures of cells, tissue samples, and small organisms.
Integration of hyperpolarization would enable quantitative studies
of metabolism in such volume limited systems by high-resolution NMR
spectroscopy. We demonstrate, for the first time, the integrated generation
and detection of a hyperpolarized metabolite on a microfluidic chip.
The metabolite [1-
13
C]fumarate is produced in a nuclear
hyperpolarized form by (i) introducing para-enriched hydrogen into
the solution by diffusion through a polymer membrane, (ii) reaction
with a substrate in the presence of a ruthenium-based catalyst, and
(iii) conversion of the singlet-polarized reaction product into a
magnetized form by the application of a radiofrequency pulse sequence,
all on the same microfluidic chip. The microfluidic device delivers
a continuous flow of hyperpolarized material at the 2.5 μL/min
scale, with a polarization level of 4%. We demonstrate two methods
for mitigating singlet–triplet mixing effects which otherwise
reduce the achieved polarization level.