Human activities have significantly altered the hydrological processes of rivers. In recent years, the increased focus on global water resource exploitation and land use changes has heightened the significance of related ecological and environmental issues. To investigate the land use changes in Hulan River Basin between 1980 and 2020, and the corresponding flow under various ecological standards, a quantitative assessment of land use changes in Hulan River Basin was conducted by analyzing the Land Use Dynamic Degree (LUD) index and the land use change matrix. Two types of models, namely natural runoff models and status quo runoff models, were developed to evaluate alterations in basin runoff. Various hydrological techniques were utilized to calculate the ecological water deficit in Hulan River Basin. The results suggest the following: (1) human consumption comprises approximately 40% of surface water resources, with Hulan River Basin exhibiting a moderate consumption level; (2) when determining the minimum ecological flow, the Distribution Flow Method (DFM) method yielded slightly higher outcomes compared to alternative methodologies; both the variable Q90 method and DFM (Q2) method satisfy 10% of the natural river flow, however, in terms of capturing the hydrological pattern, DFM exhibits a slightly lower fitting degree compared to the variable Q90 (monthly average flow with 90% guarantee rate) method; (3) DFM is identified as scientifically reasonable for determining the most suitable ecological flow in comparison to other hydrological methods; (4) despite the widespread water scarcity in Hulan River Basin, the variance between most periods and the ideal ecological flow remains minimal, indicating that severe water shortages are uncommon.