Spatio-Temporal Feature Engineering for Deep Learning Models in Traffic Flow Forecasting
Hongfan Mu,
Noura Aljeri,
Azzedine Boukerche
Abstract:In the past decade, modern transportation systems have employed various cutting-edge deeplearning approaches for traffic flow prediction. Due to its significant temporal correlations, researchers have mainly focused on extracting temporal features from traffic flow data. As a result, time-series models based on deep learning methods like Gated Recurrent Unit (GRU), Long-Term Short-Term Memory (LSTM), and Temporal Convolutional Networks (TCN) have been introduced as solutions for traffic flow prediction. Howeve… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.