Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms † Correspondence to ; Email: mikeh@alleninstitute.org, ; Email: edl@alleninstitute.org 2 These authors contributed equally to this study.
AUTHOR CONTRIBUTIONS
HHS Public Access
Author Manuscript Author ManuscriptAuthor Manuscript
Author ManuscriptThe structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of "differential stability" (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brainrelated biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry.The adult human brain is composed of many regions with distinct distributions of cell types and patterns of functional connectivity. Underlying this complexity is differential transcription, whereby different brain regions and their constituent cell types express unique combinations of genes during their developmental specification and maturation and in their mature functional state. Despite a range of brain sizes across individuals and variation in sulcal patterning in the neocortex, the general anatomical positioning of and connectivity between regions is highly stereotyped between individuals, suggesting that a significant proportion of the transcriptional coding for this common architecture is conserved across the human population.We aimed to identify the core or "canonical" transcriptional machinery conserved across individuals, in contrast to numerous studies that explore genetic variants associated with disease traits by analyzing enormous sample sizes in population studies 1 , 2 . If common expression relationships can be identified with high confidence in modest sample sizes and with good anatomical coverage of various brain regions, the resulting "default gene network" could provide a base template for understanding the genetic underpinnings of highly conserved features of brain organization and a b...