Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Qinglian River plays a significant role in China’s national water conservation security patterns. To clarify the relationship between hydrogeochemical properties and groundwater quality in this karst-fissure aquifer system, drilling data, hydrochemical parameters, and δ2H and δ18O values of groundwater were analyzed. Multiple indications (Piper diagram, Gibbs diagram, Na+-normalized molar ratio diagram, chloro-alkaline index 1, mineral saturation index, and principal component analysis) were used to identify the primary sources of chemicals in the groundwater. Silicate weathering, oxidation of pyrite and chlorite, cation exchange reactions, and precipitation are the primary sources of dissolved chemicals in the igneous-fissure water. The most relevant parameters in the karst water are possibly from anthropogenic activities, and other chemicals are mostly derived from the dissolution of calcite and dolomite and cation exchange reactions. Notably, the chemical composition of the deep karst water from the karst basin is mainly influenced by the weathering of carbonate and cation exchange reactions and is less affected by human activities. The hydrogeochemical properties of groundwater in the karst hyporheic zone are influenced by the dissolution of carbonates and silicates, evaporation, and the promotion effect of dissolution of anorthite or Ca-containing minerals. Moreover, the smallest slope of the groundwater line from the karst hyporheic zone among all groundwater groups revealed that the mixing effects of evaporation, isotope exchange in water–rock interaction or deep groundwater recharge in the karst hyporheic zone are the strongest. The methods used in this study contribute to an improved understanding of the hydrogeochemical processes that occur in karst-fissure water systems and can be useful in zoning management and decision-making for groundwater resources.
The Qinglian River plays a significant role in China’s national water conservation security patterns. To clarify the relationship between hydrogeochemical properties and groundwater quality in this karst-fissure aquifer system, drilling data, hydrochemical parameters, and δ2H and δ18O values of groundwater were analyzed. Multiple indications (Piper diagram, Gibbs diagram, Na+-normalized molar ratio diagram, chloro-alkaline index 1, mineral saturation index, and principal component analysis) were used to identify the primary sources of chemicals in the groundwater. Silicate weathering, oxidation of pyrite and chlorite, cation exchange reactions, and precipitation are the primary sources of dissolved chemicals in the igneous-fissure water. The most relevant parameters in the karst water are possibly from anthropogenic activities, and other chemicals are mostly derived from the dissolution of calcite and dolomite and cation exchange reactions. Notably, the chemical composition of the deep karst water from the karst basin is mainly influenced by the weathering of carbonate and cation exchange reactions and is less affected by human activities. The hydrogeochemical properties of groundwater in the karst hyporheic zone are influenced by the dissolution of carbonates and silicates, evaporation, and the promotion effect of dissolution of anorthite or Ca-containing minerals. Moreover, the smallest slope of the groundwater line from the karst hyporheic zone among all groundwater groups revealed that the mixing effects of evaporation, isotope exchange in water–rock interaction or deep groundwater recharge in the karst hyporheic zone are the strongest. The methods used in this study contribute to an improved understanding of the hydrogeochemical processes that occur in karst-fissure water systems and can be useful in zoning management and decision-making for groundwater resources.
Ambient air pollution’s health impacts are well documented, yet the domestic environment remains underexplored. We aimed to compare indoor versus outdoor (I/O) air quality and estimate the association between indoor/ambient fine particulate matter (PM2.5) exposure and lung function in asthma and chronic obstructive pulmonary disease (COPD) patients. The study involved 24 h monitoring of PM2.5 levels indoors and outdoors, daily peak expiratory flow (PEF), and biweekly symptoms collection from five patients with asthma and COPD (average age of 50 years, 40% male) over a whole year. Data analysis was performed with linear mixed effect models for PEF and generalized estimating equations (GEE) for exacerbations. More than 5 million PM2.5 exposure and meteorological data were collected, demonstrating significant I/O PM2.5 ratio variability with an average ratio of 2.20 (±2.10). Identified indoor PM2.5 sources included tobacco use, open fireplaces, and cooking, resulting in average indoor PM2.5 concentrations of 63.89 μg/m3 (±68.41), significantly exceeding revised World Health Organization (WHO) guidelines. Analysis indicated a correlation between ambient PM2.5 levels and decreased PEF over 0-to-3-day lag, with autumn indoor exposure significantly impacting PEF and wheezing. The study underscores the need to incorporate domestic air quality into public health research and policy-making. A personalized approach is required depending on the living conditions, taking into account the exposure to particulate pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.