The pandemic caused by coronavirus disease 2019(COVID-19) continues to disrupt the global supply chain system, bringing new risks and challenges. The uncertainty created by COVID-19 makes it is difficult for various industries to deal with the pandemic. Since the pandemic, the supply chain's resilience has been discussed and examined in some studies. However, most existing works start from a single industry perspective or pay more attention to the disturbance caused by changes in the production side. Supply chain networks of different industries, mainly transport networks, are relatively limited under the epidemic's impact. In this paper, from the perspective of highway freight transport, a comprehensive competitiveness evaluation framework was proposed to reveal and the disruption and resilience of the supply chain under the outbreak based on nine indexes with five dimensions, including efficiency, capacity, activity, connectivity, and negotiability. Based on the availability of the data(Large-scale truck trajectory), we sorted out seven categories of Chinese industries(related to highway transport) and divided them into four categories respectively: (a) Slight disruption and worse resilience; (b) Slight disruption and remarkable resilience; (c) Serious disruption and worse resilience; (d) Serious disruption and remarkable resilience. The measurement results of supply chain network performance show that the industries (cold-chain, general products, and other industries) dominated by “Efficiency - Negotiability - Connectivity” are slightly disrupted (about 33%), forming a spatial diffusion with Wuhan(the city where the pandemic first broke out) as the disrupted center, spreading outward in a circle structure. Simultaneously, five urban agglomerations surrounding it have been impacted. By contrast, due to the strict isolation measures, the industries (building materials, construction, engineering, and high-value products industry) more vulnerable to be disrupted seriously (about 82%) tend to be the pattern of “Capacity - Activity”. However, a large-scale centralized disruption was observed in the Triangle of Central China urban agglomeration was presented, resulting in almost stagnation of industry development. Meanwhile, as the future of the pandemic remains uncertain, the supply chain represented by the engineering industry, construction industry, etc are deserved to be paid more attention in line with they are prone to large-scale centralized damage due to the disruption of a single city node.