Zhejiang province in China experienced an extreme climate phenomenon in August 2014 with temperature rises, sunshine duration decreases, and precipitation increases, particularly, the successive heavy rainfall events occurring from 16 to 20 August 2014 that contributed to this climate anomaly. This study investigates the spatial-temporal variation characteristics of precipitable water vapor (PWV) and the normalized difference vegetation index (NDVI) associated with this phenomenon. Multiple sources of PWV values derived from the Global Positioning System (GPS), Radiosonde (RS) and European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data are used with different spatiotemporal resolutions. The monthly averaged PWV in August 2014 exceeded the 95% percentiles of climatological value (53 mm) while the monthly averaged temperature was less than the 5% percentiles of climatological value (26.6 °C). Before the extreme precipitation, the PWV increased from the yearly averaged value of about 35 mm to more than 60 mm and gradually returned to the August climatological average of 50 mm after the precipitation ended. A large-scale atmospheric water vapor was partially conveyed by the warm wet air current of anticyclones which originated over the South China Sea (25° N, 130° E) and the Western Pacific Ocean. The monthly NDVI variation over the past 34 years (1982–2015) was investigated in this paper and the significant impact of extreme climate on vegetation growth in August 2014 was found. The extreme negative temperature anomaly and positive PWV anomaly are the major climate-driven factors affecting vegetation growth in the north and south of Zhejiang province with correlation coefficients of 0.83 and 0.72, respectively, while the extreme precipitation does not show any apparent impact on NDVI.