Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the future, the pursuit of high-quality economic development and a focus on ecological environmental protection in China will inevitably result in significant conflicts between land use and ecological land use. Land use conflicts primarily occur in peri-urban areas characterized by prominent economic development and urban agglomeration. As a municipality situated in the Qin-Ba mountainous region, Ankang has been promoting ecological preservation for a span of two decades. The allocation of construction areas primarily focuses on the proximity of watersheds, while the northern and southern regions are predominantly characterized by mountainous and hilly terrain, thus exhibiting distinct regional attributes. Previous studies have mainly focused on analyzing the effects of land use on habitat quality during intense urbanization, with fewer studies focusing on integrating eco-regions with urbanization to assess changes in habitat quality. However, it is important to recognize that land pressure encompasses economic, ecological, and social aspects. Additionally, it aims to provide insights for the harmonious development of land use in eco-region-oriented cities. Using the SSPs-RCPs scenarios provided by the sixth phase of the Coupled Model Intercomparison Project (CMIP6), this paper employs a system analysis method, the emerging Patch-Generating Land Use Simulation model (PLUS) model, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, and Land Use Conflict Measurement model to dynamically simulate the future habitat quality and spatial conflict patterns of land use in Ankang City. The study explores the spatial coupling effect of both factors under different scenarios. The results indicate the following: (1) The overall development trend reveals an intensification of land use conflicts and a decrease in habitat quality. The expansion rate of construction land is increasing and exhibiting aggregation, while agricultural land area is expanding, and forest land area is continuously decreasing. (2) Land use intensity exhibits a significant positive correlation with land conflict levels, while land conflict levels demonstrate a significant negative correlation with habitat quality. (3) Under different future shared socioeconomic path scenarios, land use intensity, and land conflict levels follow the order of SSP585 (high forcing scenario), SSP370 (medium to high forcing scenario), SSP245 (medium forcing scenario), and SSP126 (low forcing scenario), with intensity and conflict decreasing accordingly. These findings suggest that land use has had some impact on the ecological environment, with indications of habitat degradation. Even in Ankang, where ecological development is highly valued, the city will gradually face conflicts between ecological protection and economic development in future scenarios. The city already has the environment at heart, so it will be worse in cities where the priority is economic development. Therefore, it is crucial to allocate sufficient space for economic development while simultaneously prioritizing ecological protection. The results of the study can provide a reference for analyzing the trade-offs between land development and habitat protection in eco-mountainous cities and for eco-cities to avoid falling into the conflict dilemma of economic cities.
In the future, the pursuit of high-quality economic development and a focus on ecological environmental protection in China will inevitably result in significant conflicts between land use and ecological land use. Land use conflicts primarily occur in peri-urban areas characterized by prominent economic development and urban agglomeration. As a municipality situated in the Qin-Ba mountainous region, Ankang has been promoting ecological preservation for a span of two decades. The allocation of construction areas primarily focuses on the proximity of watersheds, while the northern and southern regions are predominantly characterized by mountainous and hilly terrain, thus exhibiting distinct regional attributes. Previous studies have mainly focused on analyzing the effects of land use on habitat quality during intense urbanization, with fewer studies focusing on integrating eco-regions with urbanization to assess changes in habitat quality. However, it is important to recognize that land pressure encompasses economic, ecological, and social aspects. Additionally, it aims to provide insights for the harmonious development of land use in eco-region-oriented cities. Using the SSPs-RCPs scenarios provided by the sixth phase of the Coupled Model Intercomparison Project (CMIP6), this paper employs a system analysis method, the emerging Patch-Generating Land Use Simulation model (PLUS) model, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, and Land Use Conflict Measurement model to dynamically simulate the future habitat quality and spatial conflict patterns of land use in Ankang City. The study explores the spatial coupling effect of both factors under different scenarios. The results indicate the following: (1) The overall development trend reveals an intensification of land use conflicts and a decrease in habitat quality. The expansion rate of construction land is increasing and exhibiting aggregation, while agricultural land area is expanding, and forest land area is continuously decreasing. (2) Land use intensity exhibits a significant positive correlation with land conflict levels, while land conflict levels demonstrate a significant negative correlation with habitat quality. (3) Under different future shared socioeconomic path scenarios, land use intensity, and land conflict levels follow the order of SSP585 (high forcing scenario), SSP370 (medium to high forcing scenario), SSP245 (medium forcing scenario), and SSP126 (low forcing scenario), with intensity and conflict decreasing accordingly. These findings suggest that land use has had some impact on the ecological environment, with indications of habitat degradation. Even in Ankang, where ecological development is highly valued, the city will gradually face conflicts between ecological protection and economic development in future scenarios. The city already has the environment at heart, so it will be worse in cities where the priority is economic development. Therefore, it is crucial to allocate sufficient space for economic development while simultaneously prioritizing ecological protection. The results of the study can provide a reference for analyzing the trade-offs between land development and habitat protection in eco-mountainous cities and for eco-cities to avoid falling into the conflict dilemma of economic cities.
Desertification is a transnational, cross-regional, and global eco-environmental problem that seriously restricts sustainable socioeconomic development. As Mongolia is a typical arid and semi-arid region, the evolution of desertification in the country is closely related to major global issues such as climate change, global carbon cycling, and biodiversity. In this article, we analyze the background, development process, limitations, and other aspects of Mongolia’s desertification prevention and control policies and regulations and conclude that Mongolia needs to formulate a “Desertification Prevention and Control Law.” In particular, it needs to clarify the responsibility subjects, beneficiaries, interest compensation subjects, and illegal punishment subjects for prevention and control, as well as the responsibilities and obligations of relevant legal subjects. The research results show that it is important to form a solution mechanism in legal research on the joint prevention and control of desertification between Mongolia and China. We propose a concept of best future practice, highlighting the urgent need to establish a framework for the joint prevention and control of desertification via a cooperative mechanism between Mongolia and China and for the two countries to jointly promote global cooperation in combating this important environmental issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.