Epidemiological evidence links exposure to 2ethylhexyl diphenyl phosphate (EHDPP) with lipid metabolic disruption, typically attributed to nuclear receptors, while the role of membrane receptors remains underexplored. This study explored the role of adiponectin receptor 1 (AdipoR1) in EHDPP-induced lipid metabolic disturbances. We examined EHDPP's binding affinity and transcriptional impact on AdipoR1. AdipoR1 knockdown (AdipoR1 kd ) human liver cells and coculture experiments with AdipoR1 activator (AdipoRon) were used to investigate the effect and the mechanism. EHDPP disrupted triglyceride and phospholipid synthesis and altered corresponding gene expression, mirroring effects in AdipoR1 kd cells but diminishing in EHDPP-treated AdipoR1 kd cells. RNA sequencing revealed that EHDPP primarily disrupted oxidative phosphorylation and insulin signaling dependent on AdipoR1. Mechanistically, EHDPP interacted with AdipoR1 and reduced AdipoR1 protein levels at 10 −7 mol/L or higher, weakening the activation of the calmodulin dependent protein kinase β (CaMKKβ)/AMPK/acetyl CoA carboxylase pathway. Furthermore, EHDPP pretreatment blocked the increase in Ca 2+ flux and the corresponding kinase CaMKKβ, as well as liver kinase B1 (LKB1) activation induced by AdipoRon, which is necessary for AMPK activation. Collectively, these findings demonstrate that EHDPP-induced lipid imbalance is partially dependent on AdipoR1, expanding the understanding of environmental metabolic disruptors beyond nuclear receptors.