Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
With the increasing environmental impacts of human activities, the problem of polygenic multipollutants in groundwater has attracted the attention of researchers. Identifying the hydrobiogeochemical characteristics of the surface sewage that replenishes groundwater is crucial to addressing this problem. The input of polygenic multipollutants into groundwater leads to not only the mechanical superposition of pollutants but also the formation of secondary pollutant types. The evolution of polygenic multipollutants is influenced by aquifer characteristics, carbon sources, microbial abundance, etc. Therefore, this study took a sewage leakage point in Northwest China as the research object, carried out a controlled laboratory experiment on the impact of sewage discharge on groundwater, and, combined with long-term field monitoring results, determined the main hydrobiogeochemical processes of polygenic multipollutants and their secondary pollutants. The results showed that the redox environment and the gradient change in pH were identified as the most critical controlling factors. In oxidative groundwater during the early stage of vertical infiltration, sewage carries a substantial amount of NH4+, which is oxidized to form the secondary pollutant NO3−. As O2 is consumed, the reduction intensifies, and secondary pollutants NO3−, Mn (IV), and Fe(III) minerals are successively reduced. Compared with the natural conditions of rainwater vertical infiltration, the reaction rates and intensities of various reactions significantly increase during sewage vertical infiltration. However, there is a notable difference in the groundwater pH between sewage and rainwater vertical infiltration. In O2 and secondary pollutant NO3− reduction, a large amount of CO2 is rapidly generated. Excessive CO2 dissolves to produce a substantial amount of H+, promoting the acidic dissolution of Mn (II) minerals and generation of Mn2+. Sewage provides a higher carbon load, enhancing Mn (II) acidic dissolution and stimulating the activity of dissimilatory nitrate reduction to ammonium, which exhibits a higher contribution to NO3− reduction. This results in a portion of NO3− converted from NH4+ being reduced back to NH4+ and retained in the groundwater, reducing the denitrification’s capacity to remove secondary NO3−. This has important implications for pollution management and groundwater remediation, particularly monitored natural attenuation.
With the increasing environmental impacts of human activities, the problem of polygenic multipollutants in groundwater has attracted the attention of researchers. Identifying the hydrobiogeochemical characteristics of the surface sewage that replenishes groundwater is crucial to addressing this problem. The input of polygenic multipollutants into groundwater leads to not only the mechanical superposition of pollutants but also the formation of secondary pollutant types. The evolution of polygenic multipollutants is influenced by aquifer characteristics, carbon sources, microbial abundance, etc. Therefore, this study took a sewage leakage point in Northwest China as the research object, carried out a controlled laboratory experiment on the impact of sewage discharge on groundwater, and, combined with long-term field monitoring results, determined the main hydrobiogeochemical processes of polygenic multipollutants and their secondary pollutants. The results showed that the redox environment and the gradient change in pH were identified as the most critical controlling factors. In oxidative groundwater during the early stage of vertical infiltration, sewage carries a substantial amount of NH4+, which is oxidized to form the secondary pollutant NO3−. As O2 is consumed, the reduction intensifies, and secondary pollutants NO3−, Mn (IV), and Fe(III) minerals are successively reduced. Compared with the natural conditions of rainwater vertical infiltration, the reaction rates and intensities of various reactions significantly increase during sewage vertical infiltration. However, there is a notable difference in the groundwater pH between sewage and rainwater vertical infiltration. In O2 and secondary pollutant NO3− reduction, a large amount of CO2 is rapidly generated. Excessive CO2 dissolves to produce a substantial amount of H+, promoting the acidic dissolution of Mn (II) minerals and generation of Mn2+. Sewage provides a higher carbon load, enhancing Mn (II) acidic dissolution and stimulating the activity of dissimilatory nitrate reduction to ammonium, which exhibits a higher contribution to NO3− reduction. This results in a portion of NO3− converted from NH4+ being reduced back to NH4+ and retained in the groundwater, reducing the denitrification’s capacity to remove secondary NO3−. This has important implications for pollution management and groundwater remediation, particularly monitored natural attenuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.