2023
DOI: 10.5194/bg-20-897-2023
|View full text |Cite
|
Sign up to set email alerts
|

Spatiotemporal lagging of predictors improves machine learning estimates of atmosphere–forest CO2 exchange

Abstract: Abstract. Accurate estimates of net ecosystem CO2 exchange (NEE) would improve the understanding of natural carbon sources and sinks and their role in the regulation of global atmospheric carbon. In this work, we use and compare the random forest (RF) and the gradient boosting (GB) machine learning (ML) methods for predicting year-round 6 h NEE over 1996–2018 in a pine-dominated boreal forest in southern Finland and analyze the predictability of NEE. Additionally, aggregation to weekly NEE values was applied t… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 37 publications
0
0
0
Order By: Relevance