2017
DOI: 10.1007/s11069-017-2752-3
|View full text |Cite
|
Sign up to set email alerts
|

Spatiotemporal mapping of rainfall erosivity index for different return periods in Iran

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
24
0
4

Year Published

2017
2017
2024
2024

Publication Types

Select...
6
2

Relationship

1
7

Authors

Journals

citations
Cited by 47 publications
(28 citation statements)
references
References 47 publications
0
24
0
4
Order By: Relevance
“…Yang and Yu (2015) indicated that the parameters of Lu and Yu (2002) may change with the period of reference and improved the model by using the geographic location and elevation to predict the parameters instead of rainfall. The second one is to estimate the at‐site rainfall erosivity with observations first and then interpolate erosivity values for the sites without observations by geostatistical techniques such as inverse distance weighting (Sadeghi et al, 2017), ordinary kriging (Oliveira et al, 2012a), co‐kriging (Qin et al, 2016), regression kriging (Meusburger et al, 2012; Borrelli et al, 2016), or Gaussian process regression (Panagos et al, 2015). Geographical location, elevation, annual rainfall, and topography are usually used as covariates in the smoothing process (Goovaerts, 1999; Naipal et al, 2015).…”
Section: Mapping Outside the United Statesmentioning
confidence: 99%
“…Yang and Yu (2015) indicated that the parameters of Lu and Yu (2002) may change with the period of reference and improved the model by using the geographic location and elevation to predict the parameters instead of rainfall. The second one is to estimate the at‐site rainfall erosivity with observations first and then interpolate erosivity values for the sites without observations by geostatistical techniques such as inverse distance weighting (Sadeghi et al, 2017), ordinary kriging (Oliveira et al, 2012a), co‐kriging (Qin et al, 2016), regression kriging (Meusburger et al, 2012; Borrelli et al, 2016), or Gaussian process regression (Panagos et al, 2015). Geographical location, elevation, annual rainfall, and topography are usually used as covariates in the smoothing process (Goovaerts, 1999; Naipal et al, 2015).…”
Section: Mapping Outside the United Statesmentioning
confidence: 99%
“…According to Ferro et al (1991), places with the same mean annual R factor may actually have different R factor values for storms in different return periods that should be considered in applying managerial strategies. Sadeghi et al (2017) comments that return period analysis was adopted as a tool to help engineers and hydrologists to deal with this uncertainty.…”
Section: Return Period (Years)mentioning
confidence: 99%
“…Sadeghi et al (2017) highlights that a proper forecasting of rainfall erosivity and soil erosion is difficult due to the governing uncertainties regarding rainfall storms: they can vary from day to day and be random and unpredictable. Nonetheless, such processes might be evaluated based on probabilistic approaches like frequency distribution analysis leading to an estimation of variable magnitudes with different return periods.…”
Section: Introductionmentioning
confidence: 99%
“…Urussanga (SC) e Back et al (2016) Sadeghi et al (2017) comentam que a análise do período de retorno é uma ferramenta para ajudar os engenheiros a lidar com a incerteza, e é importante para se tomar as melhores decisões para controlar e controlar a erosão do solo com base em análises de informações e eventos aceitáveis que ocorram no passado. …”
Section: Chuva Ei30unclassified
“…O transporte e arraste das partículas minerais e orgânicas, além de carrear fertilizantes e pesticidas aplicados na adubação para os lagos, açudes e rios, podendo gerar problemas de assoreamento dos recursos hídricos (CASSOL et al, 2008). O crescimento da população mundial e as mudanças climáticas são fatores que aumentam a exploração do solo e os problemas de erosão (NAIPAL et al, 2015) A erosão hídrica é considerada como um problema sério a nível mundial do ponto de vista ambiental, econômico e social (SYVITSKI; KETTNER, 2011;LEE;LI, 2015;WANG et al, 2016;SADEGHI et al, 2017). Além de causar a degradação dos solos agrícolas e redução na produtividade, a erosão também contribui com a contaminação e poluição dos recursos hídricos e assoreamento de rios, lagos e reservatórios.…”
Section: Introductionunclassified