BackgroundAnxiety disorders have emerged as one of the most prevalent mental health problems and health concerns. However, previous research has paid limited attention to measuring public anxiety from a broader perspective. Furthermore, while we know many factors that influence anxiety disorders, we still have an incomplete understanding of how these factors affect public anxiety. We aimed to quantify public anxiety from the perspective of Internet searches, and to analyze its spatiotemporal changing characteristics and influencing factors.MethodsThis study collected Baidu Index from 2014 to 2022 in 31 provinces in mainland China to measure the degree of public anxiety based on the Baidu Index from 2014 to 2022. The spatial autocorrelation analysis method was used to study the changing trends and spatial distribution characteristics of public anxiety. The influencing factors of public anxiety were studied using spatial statistical modeling methods.ResultsEmpirical analysis shows that the level of public anxiety in my country has continued to rise in recent years, with significant spatial clustering characteristics, especially in the eastern and central-southern regions. In addition, we constructed ordinary least squares (OLS) and geographically weighted regression (GWR) spatial statistical models to examine the relationship between social, economic, and environmental factors and public anxiety levels. We found that the GWR model that considers spatial correlation and dependence is significantly better than the OLS model in terms of fitting accuracy. Factors such as the number of college graduates, Internet traffic, and urbanization rate are significantly positively correlated with the level of public anxiety.ConclusionOur research results draw attention to public anxiety among policymakers, highlighting the necessity for a more extensive examination of anxiety issues, especially among university graduates, by the public and relevant authorities.