Proximity labeling with genetically encoded enzymes is widely used to study protein-protein interactions in cells. However, the resolution and accuracy of proximity labeling methods are limited by a lack of control over the enzymatic labeling process. Here, we present a high spatial and temporal resolution technology that can be activated on demand using light, for high accuracy proximity labeling. Our system, called Light Activated BioID (LAB), is generated by fusing the two halves of the split-TurboID proximity labeling enzyme to the photodimeric proteins CRY2 and CIB1. Using live cell imaging, immunofluorescence, western blotting, and mass spectrometry, we show that upon exposure to blue light, CRY2 and CIB1 dimerize, reconstitute the split-TurboID enzyme, and biotinylate proximate proteins. Turning off the light halts the biotinylation reaction. We validate LAB in different cell types and demonstrate that it can identify known binding partners of proteins while reducing background labeling and false positives.