2024
DOI: 10.1111/tgis.13141
|View full text |Cite
|
Sign up to set email alerts
|

Spatiotemporal stacking method with daily‐cycle restrictions for reconstructing missing hourly PM2.5 records

Chuanfa Chen,
Kunyu Li

Abstract: The reliability of hourly PM2.5 data obtained from air quality monitoring stations is compromised as a result of the missing values, thereby impeding the thorough examination of crucial information. In this paper, we present a spatiotemporal (ST) stacking machine learning (ML) method with daily‐cycle restrictions for reconstructing missing hourly PM2.5 records. First, the ST neighbors for the target station with missing values are selected at a daily scale. Subsequently, the non‐null data within the ST neighbo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 58 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?