2018
DOI: 10.3390/f9120778
|View full text |Cite
|
Sign up to set email alerts
|

Spatiotemporal Variations of Aboveground Biomass under Different Terrain Conditions

Abstract: Biomass is a key biophysical parameter used to estimate carbon storage and forest productivity. Spatially-explicit estimation of biomass provides invaluable information for carbon stock calculation and scientific forest management. Nevertheless, there still exists large uncertainty concerning the relationship between biomass and influential factors. In this study, aboveground biomass (AGB) was estimated using the random forest algorithm based on remote sensing imagery (Landsat) and field data for three regions… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

1
4
0
2

Year Published

2020
2020
2025
2025

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 12 publications
(7 citation statements)
references
References 42 publications
1
4
0
2
Order By: Relevance
“…This Special Issue contains 12 studies that provided insight into new advances in the field of remote sensing for forest management and REDD+. This included developments into (1) algorithm development using satellite data [10][11][12][13][14][15][16]; (2) synthetic aperture radar (SAR) [11,17];…”
mentioning
confidence: 99%
See 2 more Smart Citations
“…This Special Issue contains 12 studies that provided insight into new advances in the field of remote sensing for forest management and REDD+. This included developments into (1) algorithm development using satellite data [10][11][12][13][14][15][16]; (2) synthetic aperture radar (SAR) [11,17];…”
mentioning
confidence: 99%
“…Chen et al [11] combine texture characteristics and backscatter coefficients of Sentinel-1 with multispectral information derived from Sentinel-2 and traditional field inventory data to develop above-ground biomass (AGB) prediction models using machine learning. Shen et al [12] apply machine learning techniques, using Landsat-5 Thematic Mapper (TM) and Landsat-8 Operational Land Imager (OLI) images to monitor the five-year change in AGB over three regions with different topographic conditions in Zhejiang Province, China. Li et al [13] test various statistical frameworks on Landsat-8 OLI data to improve AGB mapping over a subtropical forest in Western Hunan in Central China.…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…Por exemplo, a inclinação influenciou positivamente a biomassa acima do solo em florestas secundárias na China, até um limite de 45º para algumas áreas (Shen et al, 2018). Enquanto, a diversidade de áreas baixas pode ser menor comparada a áreas de planaltos e encostas .…”
Section: âNgulo De Inclinaçãounclassified
“…O aumento da biomassa acima do solo nas encostas pode ser devido a menor intervenção humana, resultando em uma vegetação melhor preservada (Shen et al, 2018). Por outro lado, relevos com maior ângulo de inclinação e voltados para o sol recebem maiores níveis de radiação (Chuvieco, 2016) e experimentam maiores temperaturas e evaporação da água dos solos .…”
Section: âNgulo De Inclinaçãounclassified