The application of machine learning and deep learning in air pollution management is becoming increasingly crucial, as these technologies enhance the accuracy of pollution prediction models, facilitating timely interventions and policy adjustments. They also facilitate the analysis of large datasets to identify pollution sources and trends, ultimately contributing to more effective and targeted environmental protection strategies. Ho Chi Minh City (HCMC), a major metropolitan area in southern Vietnam, has experienced a significant rise in air pollution levels, particularly PM2.5, in recent years, creating substantial risks to both public health and the environment. Given the challenges posed by air quality issues, it is essential to develop robust methodologies for predicting PM2.5 concentrations in HCMC. This study seeks to develop and evaluate multiple machine learning and deep learning models for predicting PM2.5 concentrations in HCMC, Vietnam, utilizing PM2.5 and meteorological data over 911 days, from 1 January 2021 to 30 June 2023. Six algorithms were applied: random forest (RF), extreme gradient boosting (XGB), support vector regression (SVR), artificial neural network (ANN), generalized regression neural network (GRNN), and convolutional neural network (CNN). The results indicated that the ANN is the most effective algorithm for predicting PM2.5 concentrations, with an index of agreement (IOA) value of 0.736 and the lowest prediction errors during the testing phase. These findings imply that the ANN algorithm could serve as an effective tool for predicting PM2.5 concentrations in urban environments, particularly in HCMC. This study provides valuable insights into the factors that affect PM2.5 concentrations in HCMC and emphasizes the capacity of AI methodologies in reducing atmospheric pollution. Additionally, it offers valuable insights for policymakers and health officials to implement targeted interventions aimed at reducing air pollution and improving public health.