Fine particulate matter is one of the atmospheric contaminants that exist in the atmosphere. The purpose of this study is to evaluate spatial–temporal changes in PM2.5 concentrations in the central and south zones of Peninsular Malaysia from 2019 to 2020. The study area involves twenty-one monitoring stations in the central and south zones of Peninsular Malaysia, using monthly and annual means of PM2.5 concentrations. The spatial autocorrelation of PM2.5 is calculated using Moran’s I, while three semi-variogram models are used to measure the spatial variability of PM2.5. Three kriging methods, ordinary kriging (OK), simple kriging (SK), and universal kriging (UK), were used for interpolation and comparison. The results showed that the Gaussian model was more appropriate for the central zone (MSE = 14.76) in 2019, while the stable model was more suitable in 2020 (MSE = 19.83). In addition, the stable model is more appropriate for both 2019 (MSE = 12.68) and 2020 (8.87) for the south zone. Based on the performance indicator, universal kriging was chosen as the best interpolation method in 2019 and 2020 for both the central and south zone. In conclusion, the findings provide a complete map of the variations in PM2.5 for two different zones, and show that interpolation methods such as universal kriging are beneficial and could be extended to the investigation of air pollution distributions in other areas of Peninsular Malaysia.