Speaker adaptive training (SAT) is a well studied technique for Gaussian mixture acoustic models (GMMs). Recently we proposed to perform SAT for deep neural networks (DNNs), with speaker i-vectors applied in feature learning. The resulting SAT-DNN models significantly outperform DNNs on word error rates (WERs). In this paper, we present different methods to further improve and extend SAT-DNN. First, we conduct detailed analysis to investigate i-vector extractor training and flexible feature fusion. Second, the SAT-DNN approach is extended to improve tasks including bottleneck feature (BNF) generation, convolutional neural network (CNN) acoustic modeling and multilingual DNNbased feature extraction. Third, for transcribing multimedia data, we enrich the i-vector representation with global speaker attributes (age, gender, etc.) obtained automatically from the video signal. On a collection of instructional videos, incorporation of the additional visual features is observed to boost the recognition accuracy of SAT-DNN.