Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
UK Health Security Agency is required to investigate the pathogenesis of emerging or re-emerging infections and to test novel interventions, such as vaccines and therapeutics against these and other diseases, such as tuberculosis and Ebola, that have a significant impact on human health world-wide. Research into the causative agents (mainly BSL 3 and 4) using a wide range of animal species as pre-clinical models brings a number of challenges in terms of effective biocontainment to address human safety whilst optimising delivery of scientific objectives and the welfare of the animals. Here we describe the strategies used for high containment of species that include mice, ferrets, hamsters, rabbits and macaques that have been infected with high consequence pathogens. To ensure relevance of these models we frequently challenge by the aerosol route and monitor the development of disease and protective or therapeutic efficacy by methodologies similar to those used in the clinic. We have devised methods of sampling that can inform on pathogenesis and immune function that include lung lavage and medical imaging such as computed tomography and positron emission tomography-computed tomography. Imaging assists our assessment of progression to disease whilst providing refinement in application of early humane endpoints. We have developed directional flow containment systems that provide quantifiable operator protection whilst allowing group housing and a wide range of enrichment strategies appropriate for each species. Furthermore, we have demonstrated our improvements in animal welfare through use of a software-based Animal Welfare Assessment Grid that was developed with help of NC3Rs funding and enables us to quantify the lifetime experience of animals.
UK Health Security Agency is required to investigate the pathogenesis of emerging or re-emerging infections and to test novel interventions, such as vaccines and therapeutics against these and other diseases, such as tuberculosis and Ebola, that have a significant impact on human health world-wide. Research into the causative agents (mainly BSL 3 and 4) using a wide range of animal species as pre-clinical models brings a number of challenges in terms of effective biocontainment to address human safety whilst optimising delivery of scientific objectives and the welfare of the animals. Here we describe the strategies used for high containment of species that include mice, ferrets, hamsters, rabbits and macaques that have been infected with high consequence pathogens. To ensure relevance of these models we frequently challenge by the aerosol route and monitor the development of disease and protective or therapeutic efficacy by methodologies similar to those used in the clinic. We have devised methods of sampling that can inform on pathogenesis and immune function that include lung lavage and medical imaging such as computed tomography and positron emission tomography-computed tomography. Imaging assists our assessment of progression to disease whilst providing refinement in application of early humane endpoints. We have developed directional flow containment systems that provide quantifiable operator protection whilst allowing group housing and a wide range of enrichment strategies appropriate for each species. Furthermore, we have demonstrated our improvements in animal welfare through use of a software-based Animal Welfare Assessment Grid that was developed with help of NC3Rs funding and enables us to quantify the lifetime experience of animals.
In-life imaging of animals challenged experimentally with infectious agents greatly enhances the quality of data gained from a pathogenesis or efficacy study. This additional information also presents an opportunity to address ethical issues by refining the studies and reducing the number of animals used. Both magnetic resonance (MR) and computed tomography (CT) imaging modalities are used extensively in human medicine to diagnose disease and to monitor the efficacy of treatments. To make animal-based studies as relevant as possible to the clinical situation, such technologies must be applied wherever possible. Imaging animals infected with disease-causing agents presents a number of challenges for programs that assure health and safety as well as the well-being of the animals during the scanning process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.