Vehicle-to-vehicle and vehicle-to-infrastructure communication systems enable vehicles to share information captured by their local sensors with other interested vehicles. To ensure that this information is delivered at the right time and location, context-aware routing is vital for intelligent inter-vehicular communication. Traditional network addressing and routing schemes do not scale well for large vehicular networks. The conventional network multicasting and broadcasting cause significant overhead due to a large amount of irrelevant and redundant transmissions. To address these challenges, we first take into account contextual properties such as location, direction, and information interest to reduce the network traffic overhead. Second, to improve the relevancy of the received information we leverage the mobility patterns of vehicles and the road layouts to further optimize the peer-to-peer routing of the information. Third, to ensure our approach is scalable, we propose a context-based grouping mechanism in which relevant information is shared in an intelligent way within and between the groups. We evaluate our approach based on groups with common spatio-temporal characteristics. Our simulation experiments show that our context-based routing scheme and grouping mechanism significantly reduces the propagation of irrelevant and redundant information.