Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Cancer remains a significant global health challenge, with millions of deaths attributed to it annually. Radiotherapy, a cornerstone in cancer treatment, aims to destroy cancer cells while minimizing harm to healthy tissues. However, the harmful effects of irradiation on normal cells present a formidable obstacle. To mitigate these effects, researchers have explored using radioprotectors and mitigators, including natural compounds derived from secondary plant metabolites. This review outlines the diverse classes of natural compounds, elucidating their roles as protectants of healthy cells. Furthermore, the review highlights the potential of these compounds as radioprotective agents capable of enhancing the body’s resilience to radiation therapy. By integrating natural radioprotectors into cancer treatment regimens, clinicians may improve therapeutic outcomes while minimizing the adverse effects on healthy tissues. Ongoing research in this area holds promise for developing complementary strategies to optimize radiotherapy efficacy and enhance patient quality of life.
Cancer remains a significant global health challenge, with millions of deaths attributed to it annually. Radiotherapy, a cornerstone in cancer treatment, aims to destroy cancer cells while minimizing harm to healthy tissues. However, the harmful effects of irradiation on normal cells present a formidable obstacle. To mitigate these effects, researchers have explored using radioprotectors and mitigators, including natural compounds derived from secondary plant metabolites. This review outlines the diverse classes of natural compounds, elucidating their roles as protectants of healthy cells. Furthermore, the review highlights the potential of these compounds as radioprotective agents capable of enhancing the body’s resilience to radiation therapy. By integrating natural radioprotectors into cancer treatment regimens, clinicians may improve therapeutic outcomes while minimizing the adverse effects on healthy tissues. Ongoing research in this area holds promise for developing complementary strategies to optimize radiotherapy efficacy and enhance patient quality of life.
The rapid development of nuclear technology has brought convenience to medical, industrial, and military fields. However, long-term exposure to a radiation environment with high energy will result in irreversible damage, especially to human health. Traditional lead-based radiation protection materials are heavy, inflexible, inconvenient for applications, and could lead to toxicity hazards and environmental problems. Therefore, it has become a mainstream topic to produce high-performance shielding materials that are lightweight, flexible, and wearable. Polymer composites are less dense and have excellent flexibility and processability, drawing great interest from researchers worldwide. Many attempts have been made to blend functional particles and polymeric matrix to produce flexible and wearable protection composites. This paper presents an extensive overview of the current status of studies on lead-free polymer composites as flexible and wearable protection materials. First, novel functional particles and polymer matrices are discussed, and recent results with potential applications are summarised. In addition, novel strategies for preparing polymeric shielding materials and their respective radiation shielding properties are analyzed. Finally, directions for developing lead-free polymeric shielding materials are indicated, and it is beneficial to provide additional references for obtaining flexible, lightweight, and high-performance wearable shielding materials.
Editorial DE INAUGURAÇÃO Inaugurar uma revista científica é uma realização coletiva, pois representa o esforço de pesquisadores das diversas áreas da ciência e inovação tecnológica, a fim de promover a comunicação e disseminação científica. Sendo assim, aplaudimos a Associação Brasileira de Tecnólogos em Radiologia (ABTER) pela decisão de lançar uma revista para publicação científica, de acesso aberto, oportunamente intitulada Brazilian Journal of Radiation Technology Research. De fato, ao longo das décadas, as ciências radiológicas vêm estabelecendo amplas aplicações para as políticas públicas de saúde e o bem-estar da vida no planeta Terra [1, 2]. Sendo assim, é fundamental a divulgação dos estudos científicos que apresentam conceitos atualizados e novas tecnologias em radiologia, como parte da solução dos problemas vivenciados pela sociedade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.