2020
DOI: 10.3390/ma13092143
|View full text |Cite
|
Sign up to set email alerts
|

Special Issue: Radiation Damage in Materials—Helium Effects

Abstract: Despite its scarcity in terrestrial life, helium effects on microstructure evolution and thermo-mechanical properties can have a significant impact on the operation and lifetime of applications, including: advanced structural steels in fast fission reactors, plasma facing and structural materials in fusion devices, spallation neutron target designs, energetic alpha emissions in actinides, helium precipitation in tritium-containing materials, and nuclear waste materials. The small size of a helium atom combined… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 23 publications
0
1
0
Order By: Relevance
“…In physical chemistry sense, He atoms have strong repulsion to W atoms [80,92]. This ultra-low solubility forces He atoms to self-precipitate into small He bubbles [83] that become nucleation sites [90] for further void growth [93] under radiation induced vacancy supersaturations [94], resulting in material swelling [69,86,95] and high temperature He embrittlement [71,96,97], as well as surface blistering [75][76][77][78] under low energy and high flux He bombardment [54,98] at elevated temperatures [99]. This may be mitigated by engineering structures in material which help in outgassing of He.…”
Section: Bubblementioning
confidence: 99%
“…In physical chemistry sense, He atoms have strong repulsion to W atoms [80,92]. This ultra-low solubility forces He atoms to self-precipitate into small He bubbles [83] that become nucleation sites [90] for further void growth [93] under radiation induced vacancy supersaturations [94], resulting in material swelling [69,86,95] and high temperature He embrittlement [71,96,97], as well as surface blistering [75][76][77][78] under low energy and high flux He bombardment [54,98] at elevated temperatures [99]. This may be mitigated by engineering structures in material which help in outgassing of He.…”
Section: Bubblementioning
confidence: 99%