Modern vehicles are equipped with various electronic control units (ECUs) for safety, entertainment, and autonomous driving. These ECUs operate independently according to their respective roles and generate considerable data. However, owing to capacity and security concerns, most of these data are not stored. In contrast, Tesla vehicles, equipped with multiple sensors and designed under the software-defined vehicle (SDV) concept, collect, store, and periodically transmit data to dedicated servers. The data stored inside and outside the vehicle by the manufacturer can be used for various purposes and can provide numerous insights to digital forensics researchers investigating incidents/accidents. In this study, various data stored inside and outside of Tesla vehicles are described sequentially from a digital forensics perspective. First, we identify the location and range of the obtainable storage media. Second, we explain how the data are acquired. Third, we describe how the acquired data are analyzed. Fourth, we verify the analyzed data by comparing them with one another. Finally, the cross-analysis of various data obtained from the actual accident vehicles and the data provided by the manufacturer revealed consistent trends across the datasets. Although the number of data points recorded during the same timeframe differed, the overall patterns remained consistent. This process enhanced the reliability of the vehicle data and improved the accuracy of the accident investigation.