2023
DOI: 10.48550/arxiv.2301.12816
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Specialization of Mordell-Weil ranks of abelian schemes over surfaces to curves

Abstract: Using the Shioda-Tate theorem and an adaptation of Silverman's specialization theorem, we reduce the specialization of Mordell-Weil ranks for abelian varieties over fields finitely generated over infinite finitely generated fields k to the the specialization theorem for Néron-Severi ranks recently proved by Ambrosi in positive characteristic. More precisely, we prove that after a blow-up of the base surface S, for all vertical curves Sx of a fibration S → U ⊆ P 1 k with x from the complement of a sparse subset… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?