Geothermal energy has been used by mankind since ancient times. Given the limited geographical distribution of the most favorable resources, exploration efforts have more recently focused on unconventional geothermal systems targeting greater depths to reach sufficient temperatures. In these systems, geothermal well performance relies on efficient heat transfer between the working fluid, which is pumped from surface, and the underground rock. Most of the wells designed for such environments require that the casing strings used throughout the well construction process be cemented in place. The overall heat transfer around the wellbore may be optimized through accurate selection of cement recipes. This paper presents the application of a three-phase analytical model to estimate the cement thermal properties. The results show that cement recipes can be designed to enhance or minimize heat transfer around wellbore, extending the application of geothermal exploitation.