Species-Dependent Response of Brassica chinensis L. to Elevated CO2 Gradients Influences Uptake and Utilization of Soil Nitrogen, Phosphorus and Potassium
Songmei Shi,
Xinju Wang,
Huakang Li
et al.
Abstract:Employing elevated CO2 (eCO2), similar to increasing atmospheric CO2 in a greenhouse, is a common practice used to increase vegetable crop yields. However, the responses of nutrient availability, nutrient uptake and use efficiency in leafy vegetables to eCO2 remain largely unknown. The plant biomass production, nitrogen (N), phosphorus (P) and potassium (K) contents, nutrient uptake, and soil enzymatic activities of three Brassica chinensis varieties of ‘Longpangqing’, ‘Heimeiren’ and ‘Qingjiangbai’ were thus … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.