Weltweit werden etwa 17% aller Infektionskrankheiten von Vektoren auf den Menschen übertragen. Dabei dienen meist blutsaugende Arthropoden wie Stechmücken, Zecken oder Sandfliegen als Überträger von Bakterien, Viren oder einzelligen Parasiten. Zur letzteren Gruppe gehört auch der protozoische Erreger der Chagas-Krankheit Trypanosoma cruzi. Er wird von hämatophagen Triatominae, einer Unterfamilie der Raubwanzen (Hemiptera: Reduviidae) während der Blutmahlzeit an einem infizierten Säugerwirt aufgenommen, durchläuft komplexe Entwicklungsschritte im intestinalen Trakt der triatominen Insekten und wird anschließend über den Fäzes und Urin der Wanzen abgegeben. Die Infektion des nächsten Wirts erfolgt dann durch das versehentliche Einreiben der Erreger in die Stichwunde oder auf Schleimhäute. Auch eine Infektion über die orale Aufnahme von kontaminierter Nahrung, Mutter-Kind-Infektionen und die Übertragung durch Blutkonserven und Organtransplantate sind möglich. Die Chagas‑Krankheit, oder auch Amerikanische Trypanosomiasis, ist insbesondere in Mittel- und Südamerika verbreitet und betrifft nach Schätzungen der WHO 6 bis 7 Millionen Menschen. Infolge von globaler Immigration und erhöhtem Reiseverkehr treten jedoch in den letzten Jahrzehnten auch vermehrt Fälle in Europa, den USA, Kanada und den westlichen Pazifikstaaten auf. Da dort bislang geeignete Vektoren fehlen, kommt es außerhalb des lateinamerikanischen Kontinents nicht zu vektorübertragenen Infektionen. Dies könnte sich jedoch im Zuge des Klimawandels und einer voranschreitenden Globalisierung ändern, sollte der Ausbreitung der Chagas-Krankheit eine Ausbreitung ihrer triatominen Vektoren folgen. Inwieweit Triatominae unter heutigen Bedingungen klimatisch geeignete Habitate außerhalb des amerikanischen Kontinents finden, wurde innerhalb des ersten Projekts der vorliegenden Dissertation untersucht. Dazu wurde mit Hilfe der ökologischen Nischenmodellierung und Vorkommensdaten verschiedener vektorkompetenter Raubwanzenarten sowie klimatischer Umweltvariablen die klimatische Eignung verschiedenster Lebensräume modelliert und global projiziert. Es zeigte sich, dass insbesondere tropische und subtropische Gebiete Afrikas sowie Ost- und Südostasiens zwischen 21° nördlicher Breite und 24° südlicher Breite für viele triatomine Vektorarten geeignete Bedingungen aufweisen. Auffällig ist dabei insbesondere die Art Triatoma rubrofasciata, welche nachweislich bereits in Südchina, Vietnam und weiteren Ländern Afrikas und Asiens gefunden wurde. Die Modellierung offenbarte, dass weitere ausgedehnte Teile der Küstenregionen Afrikas und Südostasiens als für T. rubrofasciata klimatisch geeignet angesehen werden müssen. Eine weitere Ausbreitung dieser Art ist demnach äußerst wahrscheinlich und stellt bislang das größte Risiko autochthon übertragener Chagas-Infektionen außerhalb des amerikanischen Kontinents dar. Es konnten außerdem zwei triatomine Arten identifiziert werden, namentlich T. infestans und T. sordida, welche in gemäßigten Klimazonen geeignete Habitate finden. Zu diesen gehören beispielsweise Neuseeland und Teile Australiens, aber auch südeuropäische Länder wie Spanien, Italien, Griechenland und Portugal. Da mit einer Ausweitung der klimatisch geeigneten Gebiete infolge des sich verändernden Klimas zu rechnen ist, wäre ein Monitoring der Vektoren, wie es bereits in Südchina etabliert ist, aber insbesondere die Einführung der Meldepflicht für Amerikanische Trypanosomiasis in diesen Regionen sinnvoll. Die Ergebnisse der Studie zeigen deutlich, dass die bisher vernachlässigte Tropenkrankheit Chagas nicht allein ein Problem des lateinamerikanischen Kontinents ist, sondern deren Erforschung vielmehr weltweit Beachtung finden sollte. So konzentrierten sich die folgenden Forschungsprojekte der Promotion verstärkt auf die Mechanismen, welche die Entwicklung und Transmission des Parasiten und die Interaktion mit seinen Vektoren betreffen. Von besonderem Interesse waren dabei die ökologischen Prozesse, welche bei der Kolonisation des Darmtrakts der Vektoren durch T. cruzi ablaufen und essentiell für die Proliferation und damit die Übertragung des Parasiten sind. Eine entscheidende Rolle spielen dabei die mit dem Vektor assoziierten Mikroorganismen und ihre funktionellen Fähigkeiten – zusammengefasst als Mikrobiom bezeichnet. Dieses erfüllt wichtige physiologische Funktionen des Insekts und kann beispielsweise das Immunsystem und die Detoxifikation beeinflussen. Um die Veränderungen der organismischen Zusammensetzung und der funktionellen Kapazitäten, welche die Infektion mit dem Pathogen im Darmtrakt der Vektoren auslösen, zu untersuchen, wurde ein metagenomischer Shotgun Sequenzierungsansatz gewählt. Die daraus resultierenden Datensätze wurden anschließend bioinformatisch ausgewertet und auf ihre mikrobielle Zusammensetzung und metabolischen Fähigkeiten hin untersucht. Es zeigte sich zunächst, dass das Bakterium Rhodococcus rhodnii, welches lange als alleiniger echter Symbiont des untersuchten Vektors Rhodnius prolixus galt, in seiner Funktionalität nicht einzigartig im Mikrobiom des Insekts ist. ...