2022
DOI: 10.1080/14772000.2022.2128928
|View full text |Cite
|
Sign up to set email alerts
|

Species distribution modelling and predictor variables for species distribution and niche preferences ofPilosocereus leucocephalusgroups.s.(Cactaceae)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(7 citation statements)
references
References 67 publications
0
6
0
1
Order By: Relevance
“…This research involved the environmental data: (1) Workflow of the modeling framework used in our study.…”
Section: Environmental Variablesmentioning
confidence: 99%
See 1 more Smart Citation
“…This research involved the environmental data: (1) Workflow of the modeling framework used in our study.…”
Section: Environmental Variablesmentioning
confidence: 99%
“…When TSS values are greater than 0.75, the model performs very well (Lu et al, 2022). A value of 0 or less indicates that the prediction performance is no better than random prediction (Franco-Estrada et al, 2022). The combination of AUC value and TSS value can better evaluate the performance of the model (Liu et al, 2013;Wang et al, 2019).…”
Section: Model Simulation Optimization and Evaluationmentioning
confidence: 99%
“…Una variable está relacionada con el suelo y dos con la temperatura. La mayoría de los modelos de nicho ecológico inclu yen variables de temperatura y humedad, son pocos los que consideran variables edáficas (por ejemplo, López-Mata et al 2012, Munguía-Lino et al 2017, Franco-Estrada et al 2022. El suelo es un factor importante en la distribución de las especies vegetales, sus propiedades físicas y químicas como textura, humedad, cantidad de materia orgánica, pH, contenido de nitrógeno, carbono, fósforo y potasio determinan el microhábitat de dichas especies.…”
Section: Discussionunclassified
“…To obtain more ecologically meaningful environmental factors to characterize the geographic distributions of RWR more accurately, we calculated the Environmental Rasters for Ecological Modeling (ENVIREM) dataset from the 19 bioclimatic variables using the ‘envirem’ R package, including 18 biologically relevant climatic variables (Title & Bemmels, 2018). Compared to using only WorldClim variables, previous studies have demonstrated that the inclusion of ENVIREM variables significantly improves the model performance of SDMs (Franco‐Estrada et al, 2022; Liu & Yang, 2022; Petrosyan et al, 2023). All spatial variables had a resolution of 2.5 arcmin (~5 km 2 ).…”
Section: Methodsmentioning
confidence: 99%