Reduced-toxicity conditioning with fludarabine and treosulfan is a dose-intensive regimen with enhanced anti-leukemia effect and acceptable toxicity in AML/MDS. HLA-C regulates natural-killer (NK) cell function by inhibiting Killer immunoglobulin-like receptors (KIR) and is divided into C1 and C2 epitopes. The missing-ligand theory suggests that missing recipient KIR ligands drives NK-alloreactivity after SCT, in the absence of HLA-mismatch by activating unlicensed donor NK cells. We analyzed SCT outcomes in 203 patients with AML/MDS, median age 58 years, given SCT from matched-siblings (n = 97) or matched-unrelated donors (n = 106), using two treosulfan doses (total 36 or 42 g/m ). 34% expressed one HLA-C group 1 allele (C1C1), 19% one HLA-C group 2 allele (C2C2), and 48% both KIR ligands (C1C2). Median follow-up was 48 months. 5-year relapse, nonrelapse mortality (NRM) and leukemia-free survival (LFS) rates were 38%, 27%, and 36%, respectively. Relapse rates were 43%, 45%, and 26% in patients expressing C1C1, C1C2, and C2C2 ligands, respectively (P = .03). Multivariate-analysis identified chemo-refractory disease (HR 3.1, P = .003), poor cytogenetics (HR 1.7, P = .08), female donor to male recipient (HR 0.4, P = .01) and C2C2 ligands (HR 0.4, P = .04) as independent factors predicting relapse. HLA-C ligands were not associated with GVHD or NRM. LFS was 33%, 30%, and 46%, respectively (P = .07). Chemorefractory disease (HR 3.1, P = .0004) and C2C2 group ligand (HR 0.6, P = .06) independently predicted LFS. Treosulfan dose did not predict any SCT outcome. In conclusion, missing HLA-C group 1 ligand is associated with reduced relapse risk, similar NRM and improved LFS, after HLA-matched SCT with treosulfan conditioning in AML/MDS.