Screen printing of the metallization of phosphorus diffused emitters is a well-established process for industrial silicon wafer-based solar cells. Previously, screen printed silver pastes typically required a very high phosphorus surface doping concentration to ensure a low-resistance ohmic contact. Recently, paste manufacturers have focused on the development of silver pastes capable of contacting phosphorus emitters with progressively lower surface concentrations, to minimize surface recombination losses and enable higher cell conversion efficiencies. In this paper, we report on the progress of contacting inline-diffused phosphorus emitters, of which the surface concentrations have been reduced by an etch-back process, using two different pastes. Solar cells with emitter surface concentrations ranging from 4.0 × 10 20 to 1.7 × 10 20 phosphorus atoms/cm 3 were made using two different silver pastes. We present a microstructural analysis of the contact formation, which indicates the possible dominant current transport mechanisms for the two pastes. A high density of silver crystallites formed with a very narrow interfacial glass layer makes the Sol 9600 paste suitable for contacting lowly doped phosphorus emitters. Efficiency gains of 0.2%-0.3% (absolute) were achieved, reaching a maximum efficiency of 18.6% on 156 mm × 156 mm p-type pseudo-square Cz mono-crystalline silicon solar cells.