The deformation behavior, mechanical properties, and microstructure of Fe-Cr-Mn-0.53%N austenitic stainless steel were studied at a temperature range of 77 up to 293 K. The dynamics of the steel elongation were non-monotonic with a maximum at 240–273 K, when peaks of both static atom displacements from their equilibrium positions in austenite and residual stresses in the tensile load direction were observed. The results of X-ray diffraction analysis confirmed that the only stress-induced γ→ε-martensite transformation occurred upon deformation (no traces of the γ→α′ one was found). In this case, the volume fraction of ε-martensite was about 2–3%. These transformation-induced plasticity (TRIP) patterns were discussed in terms of changes in the phase composition of steel as the root cause.