Previously we reported that ferritin in corneal epithelial (CE) cells is a nuclear protein that protects DNA from UV damage. Since ferritin is normally cytoplasmic, in CE cells, a mechanism must exist that effects its nuclear localization. We have now determined that this involves a nuclear transport molecule we have termed ferritoid. Ferritoid is specific for CE cells and is developmentally regulated. Structurally, ferritoid contains multiple domains, including a functional SV40-type nuclear localization signal and a ferritin-like region of ϳ50% similarity to ferritin itself. This latter domain is likely responsible for the interaction between ferritoid and ferritin detected by co-immunoprecipitation analysis. To test functionally whether ferritoid is capable of transporting ferritin into the nucleus, we performed cotransfections of COS-1 cells with constructs for ferritoid and ferritin. Consistent with the proposed nuclear transport function for ferritoid, co-transfections with full-length constructs for ferritoid and ferritin resulted in a preferential nuclear localization of both molecules; this was not observed when the nuclear localization signal of ferritoid was deleted. Moreover, since ferritoid is structurally similar to ferritin, it may be an example of a nuclear transporter that evolved from the molecule it transports (ferritin).