Abstract:The potentials of the forthcoming new European Space Agency's (ESA) satellite sensor, Sentinel-2, for archaeological studies was examined in this paper. For this reason, an extensive spectral library of crop marks, acquired through numerous spectroradiometric campaigns, which are related with buried archaeological remains, has been resampled to the spectral characteristics of Sentinel-2. In addition, other existing satellite sensors have been also evaluated (Landsat 5 Thematic Mapper (TM); Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER); IKONOS; Landsat 4 TM; Landsat 7 Enhance Thematic Mapper Plus (ETM+); QuickBird; Satellite Pour l'Observation de la Terre (SPOT); and WorldView-2). The simulated data have been compared with the optimum spectral regions for the detection of crop marks (700 nm and 800 nm). In addition, several existing vegetation indices have been also assessed for all sensors. As it was found, the spectral characteristics of Sentinel-2 are able to better distinguish crop marks compared to other existing satellite sensors. Indeed, as it was found, using a simulated Sentinel-2 image, not only known buried archaeological sites were able to be detected, but also other still unknown sites were able to be revealed.