2013
DOI: 10.4172/2155-6180.s1-003
|View full text |Cite
|
Sign up to set email alerts
|

Specification of Generalized Linear Mixed Models for Family Data using Markov Chain Monte Carlo Methods

Abstract: Statistical models imposed on family data can be used to partition phenotypic variation into components due to sharing of both genetic and environmental risk factors for disease. Generalized linear mixed models (GLMMs) are useful tools for the analysis of family data, but it is not always clear how to specify individual-level regression equations so that the resulting within-family variance-covariance matrix of the phenotype reflects the correlation implied by the relatedness of individuals within families. Th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0
1

Year Published

2014
2014
2022
2022

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 15 publications
0
2
0
1
Order By: Relevance
“…β or β k ), then gologit2 Stata function can be used to check the proportional odds assumption for either independent or correlated ordinal outcomes (Ellis et al, 2007). However, if inferences regarding both non-proportional covariate effects and the residual correlation structure are of interest, then such analyses are difficult to implement in standard software packages; especially for data comprising clusters of variable sizes and when the correlation between outcomes varies depending on the relationship between subjects in the population, as is the case for family data (Rabe-Hesketh et al, 2008;Jamsen et al, 2012).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…β or β k ), then gologit2 Stata function can be used to check the proportional odds assumption for either independent or correlated ordinal outcomes (Ellis et al, 2007). However, if inferences regarding both non-proportional covariate effects and the residual correlation structure are of interest, then such analyses are difficult to implement in standard software packages; especially for data comprising clusters of variable sizes and when the correlation between outcomes varies depending on the relationship between subjects in the population, as is the case for family data (Rabe-Hesketh et al, 2008;Jamsen et al, 2012).…”
Section: Introductionmentioning
confidence: 99%
“…The CLM may be extended to correlated data via the introduction of individual specific random effects to give the cumulative link mixed model (CLMM), and the proportional and non-proportional versions of this model can be fitted to clustered/multilevel data using standard software packages, such as MIXOR (Hedeker and Mermelstein, 1998), SAS PROC NLMIXED (Pinheiro and Bates, 1995;SAS Institute Inc., 2013) and GLLAMM (Rabe-Hesketh et al, 2001). The correlation structure of family data is more complex than that for other types of clustered data, and many random effects are required to model unmeasured genetic and shared environmental sources of variation (Scurrah et al, 2000;Rabe-Hesketh et al, 2008;Jamsen et al, 2012). This makes fitting the CLMM to family data computationally intensive because numerical integration of the complex likelihood function followed by maximisation to yield maximum-likelihood (ML) estimates is required.…”
Section: Introductionmentioning
confidence: 99%
“…Considerando dados de famílias, os modelos empregados neste trabalho para as estimativas de herdabilidade de fenótipos quantitativos e associação com marcadores moleculares seguem os modelos lineares mistos , os quais têm sido amplamente aplicados na medicina, pecuária, oncologia, dentre outras áreas [Almasy eBlangero, 2010, 1998, Chu e Huang, 2017, de Andrade et al, 1999, Kachman e Stroup, 1994.Esses modelos são bastante flexíveis na modelagem de dados tanto da média como dos componentes de (co)variância de variáveis normais sob delineamentos com indivíduos relacionados e têm sido usados em estudos de herdabilidade de fenótipos quantitativos e de mapeamento de genes, mostrando resultados promissores[de Oliveira et al, 2008, Diego et al, 2015, Kris M et al, 2013.Pertencente à classe dos modelos lineares mistos, o modelo mais recomendado e utilizado para explicar a herança de fenótipos foi inicialmente proposto por Fisher em 1918, denominado modelo de componentes de variância e sendo mais tarde chamado modelo linear misto poligênico. Esse modelo assume que as características fenotípicas são influenciadas por, potencialmente, um número grande de loci no genoma, assumindo-se que eles exercem seus efeitos no fenótipo de forma aditiva, ou seja, de forma independente.…”
unclassified