In many scientific and commercial domains we encounter flexibility objects, i.e., objects with explicit flexibilities in a time and an amount dimension (e.g., energy or product amount). Applications of flexibility objects require novel and efficient techniques capable of handling large amounts of such objects while preserving flexibility. Hence, this paper formally defines the concept of flexibility objects (flex-objects) and provides a novel and efficient solution for aggregating and disaggregating flex-objects. Out of the broad range of possible applications, this paper will focus on smart grid energy data management and discuss strategies for aggregation and disaggregation of flex-objects while retaining flexibility. This paper further extends these approaches beyond flex-objects originating from energy consumption by additionally considering flex-objects originating from energy production and aiming at energy balancing during aggregation. In more detail, this paper considers the complete life cycle of flex-objects: aggregation, disaggregation, associated requirements, efficient incremental computation, and balance aggregation techniques. Extensive experiments based on real-world data from the energy domain show that the proposed solutions provide good performance while satisfying the strict requirements.