Fluid–structure interaction introduces critical failure modes due to varying stiffness and changing contact states in rotor-stator systems. This is further aggravated by stress fluctuations due to shaft impact with a fixed stator when the shaft rotates. In this paper, the investigation of imbalance and rotor-stator contact on a rotating shaft was carried out in viscous fluid. The shaft was modelled as a vertical elastic rotor system based on a vertically oriented elastic rotor operating in an incompressible medium. Implicit representation of the rotating system including the rotor-stator contact and the hydrodynamic resistance was formulated for the coupled system using the energy principle and the Navier–Stokes equations. Additionally, the monolithic approach included an implicit strategy of the rotor-stator fluid interaction interface conditions in the solution methodology. Advanced time-frequency methods, such as Hilbert transform, continuous wavelet transform, and estimated instantaneous frequency maps, were applied to extract the vibration features of the dynamic response of the faulted rotor. Time-varying stiffness due to friction is thought to be the main reason for the frequency fluctuation, as indicated by historical records of the vibration displacement, whirling orbit patterns of the centre shaft, and the amplitude–frequency curve. It has also been demonstrated that the augmented mass associated with the rotor and stator decreases the natural frequencies, while the amplitude signal remains relatively constant. This behaviour indicates a quasi-steady-state oscillatory condition, which minimises the energy fluctuations caused by viscous effects.