Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The oldest stars in the Milky Way are metal-poor with Fe/H $<$ -- 1.0, displaying peculiar elemental abundances compared to solar values. The relative variations in the chemical compositions among stars is also increasing with decreasing stellar metallicity, allowing for the pure signature of unique nucleosynthesis processes to be revealed. The study of the $r$-process is, for instance, one of the main goals of stellar archaeology and metal-poor stars exhibit an unexpected complexity in the stellar production of the $r$-process elements in the early Galaxy. In this work, we report the atmospheric parameters, main dynamic properties, and the abundances of four metal-poor stars: HE 1523-–0901, HD 6268, HD 121135, and HD 195636 (--1.5 $>$ Fe/H The abundances were derived from spectra obtained with the HRS echelle spectrograph at the Southern African Large Telescope, using both local and non-local thermodynamic equilibrium (LTE and NLTE) approaches, with the average error between 0.10 and 0.20 dex. Based on their kinematical properties, we show that HE 1523--0901 and HD 195636 are halo stars with typical high velocities. In particular, HD 121135 displays a peculiar kinematical behaviour, making it unclear whether it is a halo or an accreted star. Furthermore, HD 6268 is possibly a rare prototype of very metal-poor thick disk stars. The abundances derived for our stars are compared with theoretical stellar models and with other stars with similar metallicity values from the literature. HD 121135 is Al-poor and Sc-poor, compared to stars observed in the same metallicity range (--1.62 $>$ Fe/H $>$--1.12). The most metal-poor stars in our sample, HE 1523 -- 0901, HD 6268, and HD 195636, exhibit anomalies that are better explained by supernova models from fast-rotating stellar progenitors for elements up to the Fe group. Compared to other stars in the same metallicity range, their common biggest anomaly is represented by the low Sc abundances. If we consider the elements beyond Zn, HE 1523--0901 can be classified as an r-II star, HD 6268 as an r-I candidate, and HD 195636 and HD 121135 exhibiting a borderline $r$-process enrichment between limited-r and r-I star. Significant relative differences are observed between the $r$-process signatures in these stars.
The oldest stars in the Milky Way are metal-poor with Fe/H $<$ -- 1.0, displaying peculiar elemental abundances compared to solar values. The relative variations in the chemical compositions among stars is also increasing with decreasing stellar metallicity, allowing for the pure signature of unique nucleosynthesis processes to be revealed. The study of the $r$-process is, for instance, one of the main goals of stellar archaeology and metal-poor stars exhibit an unexpected complexity in the stellar production of the $r$-process elements in the early Galaxy. In this work, we report the atmospheric parameters, main dynamic properties, and the abundances of four metal-poor stars: HE 1523-–0901, HD 6268, HD 121135, and HD 195636 (--1.5 $>$ Fe/H The abundances were derived from spectra obtained with the HRS echelle spectrograph at the Southern African Large Telescope, using both local and non-local thermodynamic equilibrium (LTE and NLTE) approaches, with the average error between 0.10 and 0.20 dex. Based on their kinematical properties, we show that HE 1523--0901 and HD 195636 are halo stars with typical high velocities. In particular, HD 121135 displays a peculiar kinematical behaviour, making it unclear whether it is a halo or an accreted star. Furthermore, HD 6268 is possibly a rare prototype of very metal-poor thick disk stars. The abundances derived for our stars are compared with theoretical stellar models and with other stars with similar metallicity values from the literature. HD 121135 is Al-poor and Sc-poor, compared to stars observed in the same metallicity range (--1.62 $>$ Fe/H $>$--1.12). The most metal-poor stars in our sample, HE 1523 -- 0901, HD 6268, and HD 195636, exhibit anomalies that are better explained by supernova models from fast-rotating stellar progenitors for elements up to the Fe group. Compared to other stars in the same metallicity range, their common biggest anomaly is represented by the low Sc abundances. If we consider the elements beyond Zn, HE 1523--0901 can be classified as an r-II star, HD 6268 as an r-I candidate, and HD 195636 and HD 121135 exhibiting a borderline $r$-process enrichment between limited-r and r-I star. Significant relative differences are observed between the $r$-process signatures in these stars.
The atmospheres of phosphorus-rich (P-rich) stars have been shown to contain between 10 and 100 times more P than our Sun. Given its crucial role as an essential element for life, it is especially necessary to uncover the origin of P-rich stars to gain insights into the still unknown nucleosynthetic formation pathways of P in our Galaxy. Our objective is to obtain the extensive chemical abundance inventory of four P-rich stars, covering a large range of heavy (Z > 30) elements. This characterization will serve as a milestone for the nuclear astrophysics community to uncover the processes that form the unique chemical fingerprint of P-rich stars. We performed a detailed 1D local thermodynamic equilibrium abundance analysis on the optical UVES spectra of four P-rich stars. The abundance measurements, complemented with upper-limit estimates, included 48 light and heavy elements. Our focus lay on the neutron-capture elements (Z $> 30$), in particular, on the elements between Sr and Ba, as well as on Pb, as they provide valuable constraints to nucleosynthesis calculations. In past works, we showed that the heavy-element observations from the first P-rich stars are not compatible with either classical s-process or r-process abundance patterns. In this work, we compare the obtained abundances with three different nucleosynthetic scenarios: a single i-process, a double i-process, and a combination of s- and i-processes. We have performed the most extensive abundance analysis of P-rich stars to date, including the elements between Sr and Ba, such as Ag, which are rarely measured in any type of stars. We also estimated constraining upper limits for Cd I, In I, and Sn I. We found overabundances with respect to solar in the s-process peak elements, accompanied by an extremely high Ba abundance and slight enhancements in some elements between Rb and Sn. No global solution explaining all four stars could be found for the nucleosynthetic origin of the pattern. The model that produces the least number of discrepancies in three of the four stars is a combination of s- and i-processes, but the current lack of extensive multidimensional hydrodynamic simulations to follow the occurrence of the i-process in different types of stars makes this scenario highly uncertain.
We present a comprehensive analysis of the detailed chemical abundances for a sample of 11 metal-poor, very metal-poor and extremely metal-poor stars ([Fe/H] = −1.65 to [Fe/H] = −3.0) as part of the HESP-GOMPA (Galactic survey Of Metal Poor stArs) survey. The abundance determinations encompass a range of elements, including C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, and Ba, with a subset of the brighter objects allowing for the measurement of additional key elements. Notably, the abundance analysis of a relatively bright highly r-process-enhanced (r-II) star (SDSS J0019+3141) exhibits a predominantly main r-process signature and variations in the lighter r-process elements. Moreover, successful measurements of thorium in this star facilitate stellar age determinations. We find a consistent odd-even nucleosynthesis pattern in these stars, aligning with expectations for their respective metallicity levels, thus implicating Type II supernovae as potential progenitors. From the interplay between the light and heavy r-process elements, we infer a diminishing relative production of light r-process elements with increasing Type II supernova contributions, challenging the notion that Type II supernovae are the primary source of these light r-process elements in the early Milky Way. A chemodynamical analysis based on Gaia astrometric data and our derived abundances indicates that all but one of our program stars are likely to be of accreted origin. Additionally, our examination of α-poor stars underscores the occurrence of an early accretion event from a satellite on a prograde orbit, similar to that of the Galactic disc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.