The past several decades have seen accelerating progress in improving binary stars fundamental parameters determinations, as new observational techniques have produced visual orbits of many spectroscopic binaries with a milli arcsecond precision. Modern astrometry is rapidly approaching the goal of sub-milli arcsecond precision, and although presently this precision has been achieved only for a limited number of binary stars, in the near future this will become a standard for very large number of objects. In this paper we review the representative results of techniques which have already allowed the sub-milli arcsecond precision like the optical long baseline interferometry, as well as the precursor techniques such as speckle interferometry, adaptive optics and aperture masking. These techniques provide a step forward from milli to sub-milli arcsecond precision, allowing even short period binaries to be resolved, and often resulting in orbits allowing precisions in stellar dynamical masses better than 1%. We point out that such unprecedented precisions should allow for a significant improvement of our comprehension of stellar physics and other related astrophysical topics.