We examine the hypothesis that space-time is a product of a continuous four-dimensional manifold times a finite space. A new tensorial notation is developed to present the various constructs of noncommutative geometry. In particular, this notation is used to determine the spectral data of the standard model. The particle spectrum with all of its symmetries is derived, almost uniquely, under the assumption of irreducibility and of dimension 6 modulo 8 for the finite space. The reduction from the natural symmetry group SU (2) × SU (2) × SU (4) to U (1) × SU (2) × SU (3) is a consequence of the hypothesis that the two layers of space-time are finite distance apart but is non-dynamical. The square of the Dirac operator, and all geometrical invariants that appear in the calculation of the heat kernel expansion are evaluated. We re-derive the leading order terms in the spectral action. The geometrical action yields unification of all fundamental interactions including gravity at very high energies. We make the following predictions: (i) The number of fermions per family is 16. There is a right-handed neutrino with a see-saw mechanism. Moreover, the zeroth order spectral action obtained with a cut-off function is consistent with experimental data up to few percent. We discuss a number of open issues. We prepare the ground for computing higher order corrections since the predicted mass of the Higgs field is quite sensitive to the higher order corrections. We speculate on the nature of the noncommutative space at Planckian energies and the possible role of the fundamental group for the problem of generations.